

STOPAQ[®] WRAPPINGBAND WSH

Product Information

Product description: Stopaq Wrappingband WSH is a corrosion preventing wrap material that is especially designed for application on wet and submerged tubular objects, and it can also be applied on dry substrates. It adheres very well to bare steel and existing coatings.

Stopaq[®] Wrappingband WSH is based on a compound containing noncrystalline, low-viscosity, non-crosslinked, (fully amorphous) pure homopolymer PolyIsoButene. It is viscous at the indicated operating temperatures and, due to its liquid nature, flows into all irregularities of the substrate. The compound does not cure and is unable to build up internal stress.

Stopaq[®] Wrappingband WSH is applied as an elementary part of Stopaq[®] Coating Systems that further require application of one of more mechanical protective layers like Stopaq[®] Outerwrap and Stopaq[®] Outerglass Shield, which become an integral part of the coating system. This improves impact and indentation resistance of the coating system and ensures adequate performance of the corrosion preventing properties.

Features:

- Adheres to many types of coating like: PE, Neoprene and Epoxies
- Controlled cold flow providing permanent inflow into the finest pores of the substrate
- Resistant to low temperatures without getting brittle
- Low surface tension; adheres on many types of dry and wet substrates at a molecular level
- Adhering well to the surface in an environment with fresh, sea or condensed water on the surface
- Constant film thickness
- Adhesion based on vanderWaals forces

Benefits:

- Safe to use
- Fast and easy to apply
- Easy to control application
- no blasting techniques required
- Conforms to irregular shapes
- Surface tolerant:, wire brushing or high pressure water jetting is sufficient

Application examples

Offshore and submerged tubular objects: For protection against external corrosion of risers and steel jetty-pile structures situated in the splash zone, both above and below the waterline.

Submerged pipelines: For protection against external corrosion of submerged carbon steel pipelines.

Underwater pipe coating repair: For pipe coating repair, coating rehabilitation, and protection against external corrosion of submerged pipeline coating defects.

Coating repair of condensing pipelines: For protection against external corrosion of steel pipelines with a surface temperature below dewpoint.

Product properties of	Stopaq [®] Wrappingband WSH			
Colour	Green			
Thickness	2,4 mm ± 10% [94 mils] ^{A)}			
Density				
	1,45 ± 0,1 g/cm³ [12.5 ± 0.8 lbs/gal] (ISO 1183-1) Operational: -45 °C to +70 °C [-49 °F to +158 °F]			
Temperature ranges	Short term: +90 °C [+194°F]			
Drip resistance				
Drip resistance	 No dripping of compound 			
Adhesion	Peel tests on carbon steel St 2 cleanliness (ISO 8501-			
Autoion	1) and plant coating PE, Neoprene whereby the			
	coating was applied under the following conditions:			
	 Dry (no detectable salt residues) 			
	 Dry with NaCl contamination approx. 1000 mg/m² Immersed in fresh water Immersed in 3% NaCl solution 			
	Peel test before ageing, after thermal ageing and			
	after hot water immersion both for 100 days at			
	Tmax + 20 °C = 90 °C ^{A)}			
	 Peel strength: 			
	At +23 °C [+73 °F] ≥ 0,040 N/mm [3.6 ozf/in] At +70 °C [+158 °F] ≥ 0,020 N/mm [1.8 ozf/in]			
	 In all cases: 			
	Cohesive separation mode and Coverage ≥ 95%			
Lap shear resistance	Tested on steel St 2 cleanliness ^{A)}			
	 Lap shear strength: 			
	At +23 °C [+73 °F] ≥ 0,004 N/mm ² [0.58 psi]			
	At +70 °C [+158 °F] ≥ 0,002 N/mm² [0.29 psi]			
	– In all cases:			
	Cohesive separation mode and Coverage ≥ 95%			
	Cohesive separation mode and Coverage ≥ 95% ete coating applied in atmospheric conditions			
- Properties of comple Construction	Cohesive separation mode and Coverage ≥ 95% ete coating applied in atmospheric conditions 1. Stopaq [®] Wrappingband WSH: ≥ 1 layer			
Construction	Cohesive separation mode and Coverage ≥ 95% ete coating applied in atmospheric conditions 1. Stopaq [®] Wrappingband WSH: ≥ 1 layer 2. Stopaq [®] Outerwrap like HSPEX: ≥ 2 layers			
Construction Thickness	Cohesive separation mode and Coverage ≥ 95% ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^A			
Construction	Cohesive separation mode and Coverage ≥ 95% ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi]			
Construction Thickness	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)}			
Construction Thickness Indentation resistance	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq [®] Wrappingband WSH: ≥ 1 layer 2. Stopaq [®] Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils]			
Construction Thickness Indentation resistance Cathodic disbondment	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)}			
Construction Thickness Indentation resistance Cathodic disbondment resistance	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance	Cohesive separation mode and Coverage $\ge 95\%$ et coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 in.lbf]^{A)}$			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance	$ \begin{array}{l} \mbox{Cohesive separation mode and Coverage $\geq 95\% \\ \hline \mbox{etc coating applied in atmospheric conditions} \\ \mbox{1. Stopaq}^{\circledast} & Wrappingband WSH: $\geq 1 layer \\ \mbox{2. Stopaq}^{\circledast} & Outerwrap like HSPEX: $\geq 2 layers \\ \hline \mbox{Typical 4,0 mm [157 mils]}^{A} \\ \hline \mbox{Tested at indentation pressure of 1 N/mm² [145 psi] \\ \mbox{at +23 °C [+73 °F] and at +70 °C [+158 °F] }^{A} \\ \mbox{- Residual thickness $\geq 0,6 mm [24 mils] \\ \hline \mbox{Tested at +23 °C [+73 °F] }^{A} \\ \mbox{- Disbondment $\leq 20 mm \\ \hline \mbox{Tested at 23 °C [+73 °F] } & \geq 15 J [132 in.lbf]^{A} \\ \hline \mbox{Rs}_{100} $\geq 10^8 \Omega.m² [$\geq 10^9 \Omega.ft²] }^{A} \\ \hline \end{array} $			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of completing - Properties of completi	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf}]^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A}$ ete coating applied in submerged conditions			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of completing - Properties of completi	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers.			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of completing - Properties of completi	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2] ^A)$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers.			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2] ^A)$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils] ^{A)}			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils] ^{A)} Tested at indentation pressure of 10 N/mm ² [1450			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ RS ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils] ^{A)} Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F] ^{A)}			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness Indentation resistance	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils]^A) Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F]^A) - Residual thickness $\ge 0,6$ mm [24 mils]			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness Indentation resistance Cathodic disbondment	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils]^{A)} Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F]^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^A)			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness Indentation resistance Cathodic disbondment resistance	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils]^A) Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F]^A) - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance	Cohesive separation mode and Coverage $\ge 95\%$ Ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J$ [132 in.lbf] ^{A)} Rs ₁₀₀ $\ge 10^8 \Omega.m^2$ [$\ge 10^9 \Omega.ft^2$] ^{A)} Ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils] ^{A)} Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] A ^A			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness Indentation resistance Cathodic disbondment resistance	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A)}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils]^A) Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F]^A) - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm			
Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical insulation resistance - Properties of comple Construction Thickness Indentation resistance Cathodic disbondment resistance Impact resistance Specific electrical	Cohesive separation mode and Coverage $\ge 95\%$ ete coating applied in atmospheric conditions 1. Stopaq® Wrappingband WSH: ≥ 1 layer 2. Stopaq® Outerwrap like HSPEX: ≥ 2 layers Typical 4,0 mm [157 mils] ^{A)} Tested at indentation pressure of 1 N/mm ² [145 psi] at +23 °C [+73 °F] and at +70 °C [+158 °F] ^{A)} - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] ^{A)} - Disbondment ≤ 20 mm Tested at 23 °C [+73 °F]: $\ge 15 J [132 \text{ in.lbf]}^{A)}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^{A}$ ete coating applied in submerged conditions 1. Stopaq® Wrappingband WSH: ≥ 2 layers. 2. Stopaq® Intermediate Wrap PVC: ≥ 2 layers 3. Stopaq® Outerglass Shield: ≥ 3 layers. Typical 6,6 mm [260 mils]^A) Tested at indentation pressure of 10 N/mm ² [1450 psi] at +23 °C [+73 °F] and @ 70 °C [+158 °F]^A) - Residual thickness $\ge 0,6$ mm [24 mils] Tested at +23 °C [+73 °F] $\ge 30 J [264 \text{ in.lbf]}^{A}$ Rs ₁₀₀ $\ge 10^8 \Omega.m^2 [\ge 10^9 \Omega.ft^2]^A)$			

General order information			
Product	Stopaq [®] Wrappingband WSH is available in rolls with		
	the following dimensions		
<u>Art. Nr.:</u>	Product dimensions and contents:		
69101-00900	100 mm x 9 m [4" x 29'6"], 6 pcs/box		
Handling	Handle with care. Keep boxes upright.		
Storage	Store indoor, clean and dry, away from direct		
	sunlight in a cool place below +45 °C [113 °F].		

Application instruction - Job preparation		Application instruction – Brief version	
General	Underwater application, of Stopaq [®] Wrappingband WSH and additional Stopaq [®] materials should only be carried out by professional divers certified for		ating instructions for application of Stopaq [®] Start with removal of a small part of the transparent
Tools, equipment and auxiliaries	 application of Stopaq[®] products. Surface preparation tools like water jetting equipment or power tooled wire brushes Scissors, knife, measuring tape Dry lint-free cloths 		release liner and apply the Stopaq [®] Wrappingband WSH onto the substrate. Wrap the Stopaq [®] Wrappingband WSH with some tension and ensure to minimize air- or water entrapment underneath. Avoid strong pulling force on the roll of material.
Additional coating materials	 Personal protective gear and diving gear if applicable Coating applied in atmospheric conditions Stopag[®] Wrappingband WSH requires application of 	Release liner	Do not remove the transparent release liner completely before application of the Stopaq [®] Wrappingband WSH. Remove just prior to application onto the substrate.
a polymeriu – Stopa – In hig Stopa Coating ap Stopaq [®] W the followin – Stopa – Stopa	polymeric outer wrap, such as:	Overlap of wraps	Coating applied in atmospheric conditions - Side-by-side overlap: ≥ 10 mm [3/8"] - Consecutive rolls: ≥ 100 mm [4"] Coating applied in submerged conditions - Side-by-side overlap: ≥ 50% Consecutive rolls: ≥ 100 mm [4"]
	the following complementary materials: - Stopaq [®] Intermediate Wrap PVC - Stopaq [®] Outerglass Shield	Visual inspection Mechanical	The appearance of Stopaq® Wrappingband WSH should look smooth and tight and should cover all details. Stopaq® Wrappingband WSH must be protected
Work area and substrate	The ambient and surface temperature during application should be > +4 °C [40 °F]. There is no need for the surface to be dry.	protection	against impacts, indentations, and other influences within the shortest period of time possible after finishing application. This is obtained by subsequent
Product conditions	The temperature of Stopaq [®] Wrappingband WSH should preferably be between +4 °C and +40 °C [39 to 104 °F] for the ease of application.		application of additional coating materials as per the specific application instruction.
		Handling and commi	
Bio rer adl exi jett	on - Surface preparation All substrates must be free from contamination. Biological growth, mill-scale, loose rust, loose	Exposure to loads	Objects coated with Stopaq [®] Wrappingband WSH should not be exposed to loads e.g. from supports- or lifting equipment.
	remainders of old coating, oil, grease and other adhering matter need to be removed. Adhering existing coating does not have to be removed. Water jetting equipment may be used to obtain a sufficient surface cleanliness.	Immersion or burying	Immersion or burying is possible immediately after completion of the coating application. Consult data sheets for specific instructions of additional materials used. In case the coating is installed on pipelines that will be buried, backfill and compact
Substrate cleanliness	The entire steel substrate should at least be cleaned to St 2 cleanliness grade (ISO 8501-1).		with clean sand and filling material without sharp stones or hard lumps of soil.
	Start and end sections of the area to be coated		
	should be thoroughly cleaned to bare steel over at	Information	
	least 150 mm e.g. by using high pressure water jet cleaning or power tooled wire brushes. Roughness profile is not essential for adhesion.	Documentation	Extensive information is available on our web-site. Application instructions and other documentation ca be obtained by sending email to info@cpgi.kz
	Areas with existing coating should be cleaned and de-glossed.	Certified staff	Application of the described coating system should be carried out by certified personnel.

Authorized distributor / Kazakhstan

info@cpgi.kz • www.cpgi.kz

DISCLAIMER: Seal For Life Industries warrants that the product conforms to its chemical and physical description and is appropriate for the use stated on the technical data sheet when used in compliance with Seal For Life Industries' written instructions. Because many installation factors are beyond the control of Seal For Life Industries' written instructions. Because and Conditions of Seal: Seal For Life Industries makes no other warranty either express or implied. All information contained in this technical data sheet is to be used as a guide and is subject to change without notice. This technical data sheet supersedes all previous data sheets on this product.